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Abstract As one of the most important antiviral drugs
against 2009 influenza A (H1N1), will zanamivir be effective
for the possible drug resistant mutants? To answer this
question, we combined multiple molecular dynamics simu-
lations and molecular mechanics generalized Born surface
area (MM-GBSA) calculations to study the efficiency of
zanamivir over the most frequent drug-resistant strains of
neuraminidase including R293K, R152K, E119A/D and
H275Y mutants. The calculated results indicate that the
modeled mutants of the 2009-H1N1 strains except H275Y
will be significantly resistant to zanamivir. The resistance to
zanamivir is mainly caused by the loss of polar interactions.
The identified potential resistance sites in this study will be
useful for the development of new effective anti-influenza
drugs and to avoid the occurrence of the state without effective
drugs to new mutant influenza strains.
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Introduction

The high speed global spread of 2009 influenza A (H1N1)
virus has given serious threat to the life of the general
population all over the world. This new subtype A/H1N1 is
a re-combined virus by human, swine, and avian influenza
viruses with a high transmissible ability among human
beings [1]. This new strain confers resistance to M2
channel inhibitors amantadine (AMT) and rimantadine
(RMT) [2]. Fortunately, the neuraminidase (NA) inhibitors
oseltamivir and zanamivir are still effective against the new
virus. However, as these drugs are widely used, neuramin-
idase will face a selection pressure and possible mutants
will occur. Some of these mutants will cause resistance to
corresponding drugs. Once the drug-resistant strains occur,
they will probably lead to a large scale outbreak of novel
pandemic flu and cause an increase of the global public
health concerns. Faced to the possible serious circumstance
and future pandemic caused by drug resistance, it will be
very useful if we can know the potential drug resistance
sites of the effective neuraminidase inhibitors in advance.
The information about the potential drug resistance sites
can provide some insights to design new effective medicine
against the possible drug resistant influenza strains. It
would also be very significant to avoid the occurrence of
the state without effective drugs to new mutant influenza
strains.

Subtype-specific NA mutations conferring resistance to
NA inhibitors have been reported by in vitro experiments
and clinical cases. For example, the mutated framework
residues H274Y and N294S are regularly identified in N1.
For the N2 and N9 subtypes, two mutations of the binding
residues (E119V and R292K) for oseltamivir were detected
after treatment of the infected patients with oseltamivir [3–
8]. Several neuraminidase mutants E119G/A/V/D, R292K
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and R152K in the N2 and N9 subtypes confer resistance to
zanamivir [8, 9]. Do these drug resistance mutants occur in
2009 influenza A (H1N1) virus? Actually, as oseltamivir is
widely used to treat the patients infected with pandemic
(H1N1) 2009 virus, the new influenza strain including
H275Y (numbered according to H1N1 sequence) mutation
has been separated in clinical recently [10]. However, once
the drug resistance strain occurs in clinical, it will result in
the situation without effective drugs. Thus, it is necessary to
identify the potential drug resistance sites in advance.
Compared with the experimental methods to identify the
potential drug resistance sites, molecular modeling method
has some advantages: it is easy to implement and can give
reasonable results; it is not restricted by laboratory
condition. Recently, molecular dynamics (MD) simulation
combined with binding free energy calculation has been
developed to investigate the molecular mechanism of drug
resistance and evaluate the potency of an inhibitor to
combat resistance [11–14]. Among the molecular dynamics
simulation-based approaches, a commonly used and tractable
approach for binding free energy calculation is the molecular
mechanics Poisson–Boltzmann surface area (MM-PBSA)
method [15, 16]. Recently, there has been an increased
interest in the faster molecular mechanics generalized Born
surface area (MM-GBSA) variant of MM-PBSA, which
replaces the PB electrostatics with the generalized Born (GB)
approximate model of electrostatics in water [15, 17, 18].
Although MM-PBSA is widely used, MM-GBSA method
has been demonstrated to be sometimes more efficient than
MM-PBSA in the study of the macromolecule-ligand
interaction [19–21].

In our previous work, we applied in silico method to
identify the potential drug resistant sites of 2009 influenza
A (H1N1) virus neuraminidase based on single trajectory
molecular dynamics (MD) simulation combined with
binding free energy calculation [22]. This method is fast
and effective. However, it can just identify the potential
residue mutations with direct interaction to the inhibitors. It
can not be applied to the mutations away from the active
site. Compared with single trajectory molecular dynamics
(MD) simulation, multiple trajectories method generally
can give a more accurate result and can be used to study the
effect of mutations both for the residues in the binding site
and away from the binding site at much higher precision.
Recently, Rungrotmongkol et al. applied multiple trajectories
molecular dynamics (MD) simulation combined with linear
interaction energy (LIE) method to predict oseltamivir
efficiency against possible influenza A (H1N1-2009) mutants,
suggesting several mutations confer to the oseltamivir
resistance [23]. However, LIE method is an empirical
method and needs the experimental binding free energy of
several inhibitors or several mutations to obtain the involved
parameters of the equation. For influenza A (H1N1-2009)

neuraminidase, there is no enough experimental data to
obtain reliable parameters of LIE equation. In addition, they
just studied the oseltamivir efficiency against probable
influenza A (H1N1-2009) mutants. For another important
antiviral drug zanamivir, we still lack relevant information
about its efficiency.

To predict the efficiency of zanamivir over the possible
mutant strains of the 2009-H1N1 influenza, MD simula-
tions combined with MM-GBSA were performed on the
complexes of zanamivir bound to 2009-H1N1-mutated
neuraminidase strains with R293K, R152K, E119A/D and
H275Y mutations, respectively (the involved residues are
displayed in Fig. 1). By comparing the binding free energy
and the structural features of zanamivir to wild type and
mutated neuraminidase, the potential drug resistant mutations
and the correlated mechanism were discussed.

Materials and methods

The wild type complex of zanamivir bound to homology
modeled A/H1N1-NA was obtained from our recent
publication [22]. The mutated neuraminidase strains with
the R293K, R152K, E119A/D and H275Y substitutions
were obtained by using the wild type complex as the initial
structure and changing the specific residues by Pymol
program [24]. During the review progress of our manu-
script, the wild type H1N1 neuraminidase crystal structure
without ligand was obtained (pdb code 3NSS) [25]. By
comparing our structure obtained from homology modeling
and the recent reported crystal structure, we found they
were very similar, indicating our homology modeling and
molecular simulation are reasonable.

The wild type and mutated complex structures were
further treated and used as the initial structures for
molecular dynamics simulation. The main procedure for
the structure treatment included the addition of hydrogen
atoms and eight disulfide bonds for protein using the leap
module together with the parameterization of receptor and
ligands in AMBER 10.0 software package [26]. The
standard AMBER force field for bio-organic systems
(ff03) [27–29] was used to describe the neuraminidase
parameters. The partial charges and force field parameters
of zanamivir were taken from our previous study [22]. For
each system, the counter ions were added to neutralize each
ligand-bound system. Then, the corresponding systems
were solvated using atomistic TIP3P water [30] in a
octahedron box with at least 10 Å distance around the
complex.

The molecular dynamics simulations including energy
minimization and equilibration protocols were performed by
using AMBER 10.0 software package [26]. The energy
minimization was first conducted using the steepest descent
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method switched to conjugate gradient every 1000 steps for
a total of 2000 steps. As follows, the system was annealed
from 0 to 300 K over a period of 50 ps using a Langevin
thermostat with a coupling coefficient of 2.0/ps. All
subsequent stages were carried out in the isothermal isobaric
(NPT) ensemble using a Berendsen barostat [31] with a
target pressure of 1 bar and a pressure coupling constant of
2.0 ps. The systems were again equilibrated for 500 ps. The
production phase of the simulation was run by maintaining
the 0.1 kcal mol-1 Å-2 force constants on the restrained atoms
for a total of 10 ns. Here, in the 10 ns production phase, the
restrained atoms included the heavy atoms of the residues
95-216 and 449-467, which lie in the close contact surface of
each monomer. The aim to restrain these residues is to keep
the backbone fold intact like the natural tetramer since we
used the monomer during molecular dynamics. During the
whole simulation processes, long-range Coulombic interac-
tions were handled using the particle mesh Ewald (PME)
summation [32]. For the equilibration and production run,
the SHAKE algorithm [33] was employed on all atoms
covalently bonded to a hydrogen atom, allowing for an
integration time step of 2 fs.

Following the MD process, MM-GBSA calculations
were performed using AMBER10 [26] to compare the
binding energy of zanamivir to wild type and mutated
strains. The first step of MM-GBSA method is the
generation of multiple snapshots from an MD trajectory of
the protein-ligand complex, stripped of water molecules
and counter ions. Snapshots, equally spaced at 10 ps
intervals, were extracted from the MD production equili-
brated trajectory. For each snapshot, the free energy is
calculated for each molecular species (complex, protein,
and ligand). The binding free energy is computed as the
difference:

ΔGbind ¼ Gcomplex � Gprotein � Gligand ð1Þ
The free energy G for each species can be calculated by the

following scheme using the MM-GBSA method [19, 20]:

G ¼ Egas þ Gsol � TS ð2Þ

where Egas is the gas-phase energy; Gsol is the solvation free
energy which (or and it) can be decomposed into polar and
nonpolar contributions. T and S are the temperature and the
total solute entropy, respectively.

In amber force field, the gas-phase energy includes the
bond, angle, and torsion energies as well as the Coulomb
and van der Waals energies [29]. In MM-GBSA method,
the solvation free energy can be calculated as follows,

Gsol ¼ GGB þ Gnonpolar ð3Þ

Gnopolar ¼ gSASAþ b: ð4Þ
Here, GGB is the polar solvation contribution calculated

by solving the GB equation [19, 20]. Dielectric constants
for solute and solvent were set to 4 and 80, respectively.
Gnonpolar is the nonpolar solvation contribution and was
estimated by the solvent accessible surface area (SASA)
determined using a water probe radius of 1.4 Å. The surface
tension constant γ was set to 0.0072 kcal mol-1 Å-2 and b
was set to 0 kcal mol-1 [34].

The vibrational entropy contributions are estimated by
normal mode analysis [35]. Because of the high computa-
tional demand, only 20 snapshots were used in normal
mode analysis for every trajectory and each snapshot was
optimized for 100,000 steps using a distance-dependent
dielectric of 4rij (rij is the distance between atoms i and j)
until the root-mean-square deviation of the gradient vector
was less than 0.0001 kcal mol-1 Å-2.

Results and discussion

Simulation stability

For each system, 10 ns molecular dynamics production
simulation was performed. Here, the equilibration of the
MD trajectories was monitored from the convergence of the
root-mean square deviation (RMSD) of Cα atoms as well

Fig. 1 The studied complex of
zanamivir and neuraminidase
(the involved mutations were
displayed in sticks)
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as the time evolution of RMSD of Cα atoms for the
residues in 5 Å around ligand and RMSD of heavy atoms
for ligand for each system from the original starting
coordinates (Fig. 2a-c). By monitoring the RMSD of Cα
atoms of the whole protein, most systems have a similar
trend and are up to equilibration in the last two nano-

seconds. From the time evolution of RMSD of Cα atoms
for the residues in active site, R293K strain, relative to
other systems, has a larger structural fluctuation. The
RMSD change of heavy atoms for ligand indicates several
mutations including R293K, E119D and R152K will
influence the binding mode of ligand and make zanamivir
binding less stable.

How do their mutations influence the ligand binding? In
Figs. 3 and 4, we analyzed the hydrogen bond features
between zanamivir and protein for wild type and mutation
types. Here, the default geometric criterion to define the
hydrogen bond is used: the donor-acceptor heavy atom
distance should be less than 3.5 Å, and the donor-hydrogen-
acceptor angle should be larger than 120°. For the wild type
strain, from Fig. 4a, several pairs of important hydrogen
bonds were formed. For example, the carboxyl group of
zanamivir as hydrogen bond acceptor formed the conserved
hydrogen bonds with three residues including R118, R293
and R368. There are several hydrogen bond pairs between
the guanidinyl group and the residues with negative charge
such as E119, E228 and E278. For the amide group of
zanamivir, two pairs of hydrogen bonds are formed with
R152 and E278. In addition, the 1,2,3-trihydroxy propyl
group (-CH(OH)CH(OH)CH2(OH)) formed the hydrogen
bonds with two residues E277 and N295. From Figs. 3 and
4, it can be seen that the R293K mutation reduces the
formation of hydrogen bonds largely. Several important
hydrogen bonds including pairs between the carboxyl
group and R293 as well as R368, between amide group
and E278, between the 1,2,3-trihydroxy propyl group and
N295 disappear completely. The disappearing of several
hydrogen bonds between zanamivir and protein should be
responsible for the large RMSD of ligand and active site of
neuraminidase. Surprisingly, these large structural changes
are not in agreement with the result from X-ray structures
of the highly homologous N9 neuraminidase [36, 37].
According to the reported X-ray structures of N9 neur-
aminidase, R293K replacement only made a very local
structural change. To find why our studied H1N1 neur-
aminidase has a large structural change upon the R293K
mutation, first we compared the difference of the H1N1 and
N9 neuraminidase. By comparing the the H1N1 and N9
neuraminidase structures, we found one loop (344-347)
around Arg293 and Arg368 (according to H1N1 sequence
number) was very different in the sequence and the
corresponding conformation (shown in Fig. 5). In N9
neuraminidase, this loop is composed of four asparagines.
The two middle asparagines form a good packing with the
neighboring loop residues Trp295 and Gln296, making the
loop have a relative rigid conformation. The rigid confor-
mation of the loop restrains the movement of Asn347 and
the formation of the hydrogen bond between Asn347 and
Lys293 or Arg368. However, in the H1N1 neuraminidase,

Fig. 2 Themonitoring of the equilibration for theMD trajectories: (a) The
time series of the RMSD of Cα atoms from the initial structure; (b) Time
evolution of RMSD of Cα atoms for the residues around 5 Å of the
ligand; (c) Time evolution of the RMSD of heavy atoms for the ligands
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the corresponding loop is composed of Asn344, Ala345,
Gly346 and Asn347. The relative small residues replacing
two middle asparagines result in the packing with the
neighboring loop disappearing and make this loop more
flexible. By monitoring molecular dynamics trajectories, we
can see that residue Asn347 forms hydrogen bond either
with the mutated Lys293 or Arg368 (Fig. 6). The formation
of these hydrogen bonds may interrupt the interaction
between Lys293 or Arg368 and zanamivir, making the large
conformation rearrangement happen. Meanwhile, from the
crystal structure of N9 neuraminidase with R293K muta-
tion, it can be seen that two important water molecules
entered into the active site around carboxyl group of
inhibitors and the mutated K293. These two water
molecules as a bridge play an important role to stabilize
the local conformation, making the R293K mutation only
result in a very small local change of structure compared
with the wild type one. The missing of these crystallized
water molecules around K293 and R368 in our homology
modeled structure may also affect the arrangement of the
corresponding residues and the binding mode of zanamivir.

Compared with R293K mutation, E119D and R152K
mutations also reduce the formation of hydrogen bonds but
with relative lighter degree compared with R293K mutation.
E119D mutation changes the hydrogen bond occupation
between the mutated residue 119 and guanidinyl group of

zanamivir and makes the hydrogen bond pair between E227
and zanamivir vanishing. The decreasing of these hydrogen
bond interactions affects the binding stability of zanamivir but
does not affect the flexibility of active site for E119Dmutants.
Compared with wild type strain, only one hydrogen bond pair
disappears in R152K mutation and thus makes a small effect
on the zanamivir binding.

The identification of potential drug resistance sites
from binding free energy calculation

To estimate the effect of the studied mutants on the binding free
energy of zanamivir and to identify the potential drug resistance
sites, a MM-GBSA analysis was performed using the extracted
snapshots from the last 2 ns of the MD simulation. The
calculated binding energies for zanamivir are given in Table 1.
From Table 1, it can be seen that all the studied mutations
except H275Y will weaken the interaction between neuramin-
idase and zanamivir. The H275Y mutant has a similar or even
lower binding free energy with zanamivir compared to the
wild type neuraminidase. The calculated results indicate that
several mutations including R293K, E119D/A, D151A and
R152K reduce the effectiveness of zanamivir and induce the
occurrence of drug resistance. However, H275Y mutant
which is a drug resistance mutation for oseltamivir will not
induce the resistance of neuraminidase to zanamivir.

Fig. 3 Percentage occupation of
hydrogen bonds between
zanamivir and the NA residues
in wild type and different
mutants
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Fig. 4 The interaction between zanamivir and neuraminidase in wild type and different mutants
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To display the loss degree of effectiveness, we further
calculated the relative binding free energy (ΔΔGbind, is equal
to ΔGmut – ΔGwt) of zanamivir over the studied mutants
compared with wild type. The ΔΔGbind for R293K, R152K,
E119D, E119A are 13.65, 4.63, 4.47, 3.61 kcal/mol-1,
respectively. The reduction of binding free energy accounts
for the descent of inhibitory activity of zanamivir to mutant
strains. Overall, the modeled mutants of the 2009-H1N1
strains will be significantly resistant to zanamivir, with the
ranked order of: R293K>R152K>E119D>E119A.

Although the potential drug resistance sites of neuramin-
idase of 2009 A/H1N1 to zanamivir are still unknown due to
its limited use in clinical, we can not evaluate the accuracy of
our results directly. But by comparing the reported drug
resistance mutations for neuraminidase with other influenza
strains to zanamivir and our calculated results, we can justify
the reliability of our identified drug resistance sites indirectly.

R293K strain has been reported to be resistant to zanamivir for
several influenza strains such as H1N1/1933 and A/N2 [8, 9].
The resistance from E119A/D mutations to zanamivir was
found in influenza A/N2 [9]. R152K strain was also found to
be resistant to zanamivir in influenza B [9]. All these
reported drug resistance sites in other influenza strains are
identified to be resistant to influenza A/H1N1 neuraminidase
in our calculations. Additionally, we also studied the effect of
one oseltamivir-resistant mutation H275Y to the binding of
zanamivir. The studied results indicate that this mutation
does not influence the binding affinity of zanamivir, which is
also consistent with the experimental results. For the drug
resistance sites of neuraminidase to zanamivir, the H275Y
mutation has never been reported. As for the rank of
resistance potential, the studied mutants except R293K based
on our calculation is basically consistent with the reported
experimental binding affinity results for other influenza
strains [9, 38]. For R293K mutants, the binding affinity
may be underestimated due to the change of binding mode
from the structural rearrangement of active site as discussed
above and the improper estimation of binding free energy
which will be discussed later.

In order to seek the origin to drive the loss of sensitivity
of zanamivir to different mutants, we need to consider the
interplay between the enthalpic and entropic contributions
to binding free energy [39]. Enthalpic contributions provide
a measure of the strength of the interactions between the
inhibitor and the protein (electrostatic, van der Waals
interactions), relative to those with the solvent. Entropic
contributions comprise the change in solvent entropy
arising from the burial of hydrophobic groups upon binding
and the loss of solute conformational degrees of freedom
(translational, rotational, and vibrational) [40]. By compar-
ing the contribution of enthalpy of wild type and mutants,
all potential drug resistance mutants have an unfavorable
enthalpy contribution. From the perspective of entropy,
three mutations E119A/D and R152K also display unfa-
vorable effect for zanamivir binding compared with wild

Fig. 5 The comparison of H1N1
and N9 neuraminidase structures
(yellow: H1N1 neuraminidase;
cyan: N9 neuraminidase with
R293K mutation)

Fig. 6 The monitoring of the distance between the oxygen atom from
side chain of Asn347 and the terminal nitrogen atom from side chain
of Lys293 or Arg368
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type. But the R293K mutant with the largest enthalpy loss
has a favorable entropy contribution.

Furthermore, we decompose the enthalpy to be more
detailed individual energy contribution to zanamivir bind-
ing in Table 1, including electrostatic and van der Waals
energy contributions in gas phase, the polar and nonpolar
solvation energy contributions. Generally, the electrostatic
interaction contribution in gas phase is compensated by a
large desolvation penalty which is polar solvation contri-
bution. In order to identify the true electrostatic interaction
contribution, we further decompose the binding free energy
to polar and non-polar interaction contribution. The polar
item composed of the electrostatic interaction in gas phase
and the polar solvation contribution computed by solving
the GB equation. The non-polar interaction was obtained by
summing the van der Waals energy item and non-polar
solvation contribution. From Table 1, the R293K mutation
has the largest reduction in the binding ability to zanamivir.
By analyzing the difference of every energy item contrib-
uted in wild type and R293K mutants, it can be seen that
the loss of binding affinity mainly comes from the loss of
polar interaction contribution. The replacement of R293 by
lysine results in a decrease of more than 12 kcal mol-1 in
the polar interaction contribution. This large decrease
comes from a significant structural rearrangement and loss
of important hydrogen bond interaction (Figs. 3 and 4) from
one side. From another side, it may be from the inaccurate
estimation of electrostatic interaction since it is still a
challenge to estimate accurately the electrostatic interaction
for binding free energy calculations. Thus, the inaccurate
estimate of electrostatic interaction may also affect the
reliability of binding free energy of R293K mutants.
Besides the polar interaction contribution, the nonpolar
interaction contribution also decreased more than
3 kcal mol-1. The loss of nonpolar interaction contribution
is from the packing loss of the side chain of R293 and
zanamivir. From Fig. 4a and b, it can be seen that the
substitution of R293 by lysine results in the complete loss
of the interaction between this residue and zanamivir. For
other mutants, from Table 1, the nonpolar interaction has a
similar or larger contribution compared to wild type but the
loss of polar interaction on a large degree results in the
reduction of the total biding free energy furthermore

resulting in the resistance to zanamivir. As shown in
Fig. 4, the loss of polar interaction more or less depends
on the change of hydrogen bond mode.

Conclusions

In this study, multiple trajectories molecular dynamics simula-
tion combined with MM-GBSA calculations were used to
study the complex of zanamivir with neuraminidase of new
strain 2009 influenza A (H1N1) virus. Different strains
(including wide type, E119A/D, R152K, H275Y and R293K)
were studied to identify potential drug resistance sites. Based
on the results of MD simulation and MM-GBSA calculations,
we found that zanamivir would be significantly resistant to the
modeled mutants of the 2009-H1N1 strains except the H275Y
mutant. According to the binding free energy, zanamivir will
lose its effectiveness to the studied mutants in the following
ranked order: R293K (-2.41 kcal mol-1)> R152K
(-11.44 kcal mol-1)> E119D (-11.59 kcal mol-1)>E119A
(-12.46 kcal mol-1). The origin of resistance is mainly from
the loss of polar interactions. This information indicates it is
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